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Testing for Nondisjunction in the Mouse
by Ann C. Chandley* and R. M. Speed*

Tests for nondisjunction have been carried out in male and female mice. Ten-day fetal progeny of control
and treated adults have been karyotyped to establish spontaneous and induced levels of aneuploidy. In
males, the effects of 100 rad x-rays on type A spermatogonia and early primary spermatocytes, and the
effects of Mitomycin C (2 mg/kg) on early primary spermatocytes, have been tested. The results show
insensitivity of primary spermatocytes to both agents, but a 3.5-fold increase in nondisjunction following
spermatogonial irradiation. In females, comparisons have been made between young controls, young
x-rayed (5 rad), aged controls and aged x-rayed (5 rad) animals. The "ageing effect" on nondisjunction is
observed, but too few fetuses have been analyzed to reach conclusions regarding enhancement of non-
disjunction levels by low doses of x-rays.

Introduction
Data concerning the frequency of spontaneous

and induced nondisjunction at meiosis in the mouse,
and the resulting levels of aneuploidy found among
fetal and adult offspring have been obtained by using
the following methods: (1) counts of second meiotic
metaphase in oocytes (1-5) or spermatocytes (6-8);
(2) karyotypes of pre-implantation embryos at the
one-call stage (9-11) or in morulae and blastocysts
(12-14); (3) karyotypes of post-implantation embryos
(13-18); (4) karyotypes of live newborn offspring
(19); (5) genetic testing in adults by methods based on
the complementation of unbalanced gametes (20) or

examination of the progeny of matings with sex-

linked markers (21-23)
Each method has its merits and its disadvantages

as far as application to screening is concerned.
Methods 1 and 2 can obviously provide a better
indication of the primary incidence of nondisjunc-
tion, but methods 3, 4, and 5 give a more realistic
estimate of the surviving nondisjunctional load with
which we should be concerned when extrapolations
to man are being considered.

In our own laboratory, we have chosen method 3
as a suitable means of screening for non-disjunction
in the mouse. Our procedures are essentially those
described by Yamamoto et al. (14, 15) for the
karyotypic analysis of9-10 day old fetuses among the
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offspring ofcontrol and treated animals. Screening at
this stage of gestation will lead to the detection of
most trisomic offspring, but many monosomics will
go undetected: Gropp et al. (24, 25) have shown that
while most trisomics in the mouse survive at least
until day 10 ofgestation, the majority of monosomics
have degenerated by this time. This loss of informa-
tion is compensated for, however, by the fact that the
technique (26) for obtaining good quality metaphase
spreads from 9-10 day fetuses or their membranes is
extremely simple and many fetuses can be processed
in a relatively short space of time. Once a numerical
abnormality has been detected, precise information
on the identity of the particular chromosome in-
volved in the nondisjunctional event can be obtained
by application of a suitable banding technique (27,
28). Thus, the relative contributions made by sex
chromosomal and autosomal aneuploidy can be es-
timated, and the involvement of specific chromo-
somes assessed.
Three different experiments have now com-

menced in our laboratory.

X-Ray Induced Nondisjunction in
Males
The first was designed to test the sensitivity to

x-rays of two different stages of spermatogenesis.
From early work concerning the killing effects of
x-rays on mouse germ cells (29-32), a dose of 100 rad
was chosen as one which would ensure continuous
fertility of irradiated males and minimal sper-
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Table 1. Time required for each stage of processing of
9-10 day old fetuses or their membranes.

Process Time required,
min

Dissection of fetus from uterus 5
Removal of membrane 2
Incubation in medium plus colchicine 60
Hypotonic treatment 15
Fixation 30 (minimum)
Slide-making (two slides) 10
Staining 5
Karyotype analysis on five cells 10

matogonial and spermatocyte death, while giving
what we hoped would be a detectable increase in
nondisjunction. It is known that preleptotene is a
particularly sensitive stage to the killing effects of
x-rays in the mouse, only about 50%o of cells in that
stage surviving a dose of 200 rad (32).

Methods
The cell stages chosen for testing were primary

spermatocytes in early meiotic prophase (including
S-phase) and type A spermatogonia, the cell stage
most at risk as far as long term genetic effects are
concerned (33). To sample those two stages, males
were mated in week 5 (spermatocytes) and week 7
(type A spermatogonia) after irradiation, sper-
matogenic timings being based on the findings of
Oakberg (29, 30), Sirlin and Edwards (34), and
Bateman and Chandley (35).

In each run ofthe experiment, four random-bred Q
strain males were irradiated with 100 rad x-rays on
day 1 of week 1. Four other Q males were kept as
untreated controls. On day 1 of week 5, each male
was mated to two Q females and each female exam-
ined daily for the presence ofa vaginal plug. On day 7
of week 5, males were removed from females and
kept unmated until day 1 of week 7. Throughout
week 7, the males were again mated to two fresh Q
females and plugs again recorded. At the end ofweek
7, all males were destroyed.

Pregnant females from the week 5, week 7 and
control matings were killed at 9-10 days gestation
and chromosome preparations made from all viable
fetuses or their membranes. Dead implants or de-
ciduomata unlikely to give a satisfactory chromo-
some preparation were excluded.
Two slides were made from each fetus, one being

stained for immediate analysis with Giemsa stain,
the other being held in reserve for banding analysis
should a chromosome abnormality be detected. A
minimum of five well-spread metaphases was
analysed per fetus, and a further 10 or 20 cells were
scored if mosaicism was suspected.

In general, it was found that about 40 fetuses could
be comfortably processed up to and including the
slide-making stage in an average working day. The
time in minutes taken for each stage of processing
from dissection to -karyotype analysis is shown in
Table 1. One run of the experiment, yielding ap-
proximately 100 fetuses from the week 5 matings,
100 from the week 7 matings, and 100 control fetuses,
could be completed in about 10 weeks by one indi-
vidual. Costs incurred included the treatment and
maintenance of the animals, small amounts of
medium, hypotonic solutions, fixatives, stains and
slides. The most expensive factors were the micro-
scope for cytogenetic analysis and the salary of the
individual carrying out the processing and scoring of
the slides.

Results
The results are shown in Table 2. The overall

frequency of abnormalities in the controls was 0.89
+ 0.40%o, compared with 1.75 + 0.40O in week 5 and
2.51 + 0.78% in week 7. The increases in weeks 5 and
7 were, however, not statistically significant.

Since mosaicism is a phenomenon produced by
two cell lines developing in a single zygote, and
polyploidy a phenomenon probably arising near the
time of fertilization (36), they will not be considered
in the following section. For aneuploidy alone (Table
3), the level was 0.36% in controls, 0.41% in week 5,
and 1.26% in week 7. However, if one assumes that

Table 2. Karyotype analysis of 10 day fetuses from control and treated (100 rad x-rays and Mitomycin C) male mice.

No. of Mean No. of Karyotype analysis
No. of viable litter fetuses Total %

Treatment males fetuses size analyzed Others 39 39/40 40 40/41 41 43 60 80 abnormal abnormal

Control 35 572 11.2 561 2 556 2 1 5 0.89 ± 0.40
Week 5, 100 rada 69 1007 8.9 972 2 2 3 955 2 1 1 4 2 17 1.75 0.40
Week 7, l00 radb 24 410 10.3 398 1 2 388 1 4 2 10 2.51 0.78
Week5 MitomycinC, 20 333 8.5 325 2 321 2 4 1.23 ± 0.61

(2 mg/kg)

aWeek 5 represents sampling of treated early primary spermatocytes; week 7 represents sampling of treated type A spermatogonia.
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Table 3. Percentage aneuploid, polyploid, and mosaic fetuses from x-ray (100 rad) and
Mitomycin C (2 mg/kg)-treated male mice and controls.

Aneuploid Polyploid Mosaic Total no.
of fetuses

Treatment n t n % n % analyzed

Control 2 0.36 1 0.18 2 0.36 561
Week 5 100 rad 4 0.41 6 0.62 6 0.62 972
Week 7 100 rad 5 1.26 2 0.50 3 0.75 398
Week 5 Mitomycin C 2 0.60 0 0.00 2 0.60 333

the eliminated monosomic embryos were originally week 5 and a surviving chromosome 19 monosomic
as frequent as the trisomics, a corrected estimate, conceived on day 7 of week 7. The latter fetus was
based on the frequency of observed trisomics only, litter mate to an XXYY tetraploid.
can be derived. The method (13) is to double the
number of trisomic embryos and express this as a Mitomycin C-Induced
percentage of the number of diploid embryos. (2n = Nondisjunction in Males
40) plus twice the number of trisomic embryos. (The n
mosaic embryos are allocated to the normal and In Tables 2, 3, and 4, data are also given for a
trisomic classes according to their presumed zygotic preliminary trial of the effectiveness of Mitomycin C
constitution and the polyploids ignored). The aneu- (MC) in producing nondisjunction in early spermato-
ploid frequencies thereby obtained are 0.71% for cytes of the mouse (week 5 sampling). The rationale
controls, 0.83% for week 5, and 2.50o for week 7. for the experiment was that MC, an antibiotic agent
This gives a 3.5-fold increase in aneuploidy over affecting DNA synthesis, produces chromosomal
control levels for type A spermatogonia irradiated aberrations, chiefly in centromeric heterochromatin
with 100 rad x-rays. of the somatic cells of a number of species including
Table 4 shows the individual karyotypes of the man (3741). The cytogenetic observation of par-

aneuploid, polyploid, and mosaic fetuses found. ticular relevance is that the induced aberrations
Sex chromosome and autosomal aneuploidies ap- show a unique spectrum of crosslike exchanges with
pear to be approximately equally represented, and an excessive involvement of homologous chromo-
the five fully analyzed autosomal aneuploids show somes. Such events, we supposed, might give rise to
that there has been nondisjunction in every case of nondisjunction in an affected germ line cell treated at
an acrocentric pair in the smaller size range of the S phase.
genome (chromosomes 10-19). The most remarkable Our results on 325 Fi fetuses from males given a
aneuploids found were a triple trisomic with a 43, single intraperitoneal injection of MC (2 mg/kg) and
XXY,+ 10,+ 17 karyotype conceived on day 5 of mated during week 5 after injection showed, how-

Table 4. Karyotypes of the abnormal fetuses found in experiments 1 and 2.

Treatment Aneuploid Polyploid Mosaic Others

Control 41,XXY(2) 60,XXY 39/40(2)a
Week 5, (100 rad) 39,X(2) 60,XXY(3) 39,X/40,XY 40,XY,lq+

41,XY,+ 16 3n = 60a 39/40(2)a
43,XXY, + 10,+ 17 80,XXXXb 40,XY/41,XXYb

80,XXYY 40,XY/41,XYY
40,XY/80,XXYY

Week 7, (100 rad) 39,XX,-19b 80,XXYY(2)b 39/40(2)a
41,XXY 40,XY/41,XY+8
41,XY,+ 14
41,XX,+ 14
2n = 41a

WeekS 39,X(2) 40/41a
(MC) 39/40/41a

aNot analyzed.
bLitter mates.
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Table 5. Karyotype analysis of 10 day Fl fetal progeny of young (6-8 weeks) and
aged (9 month) female mice in control and treated (5 rad x-ray) groups.

No. Mean No. Karyotype analysis
No. viable litter fetuses No. %

Treatment females fetuses size analysed 39 39/40 40 40/41 41 60 80 abnormal abnormal

Control young 51 572 11.2 561 2 556 2 1 5 0.89 0.40
5 rad young 10 108 10.8 106 1 105 1 0.94 ± 0.94
Control aged 17 89 5.2 83 2 79 1 1 4 4.82 ± 2.35
Aged+Srad 8 47 5.9 47 46 1 1 2.13±2.10
5 rad + aged 12 60 5.0 54 1 52 1 2 3.70 2.57

ever, no increase in nondisjunction over control
levels (Tables 2 and 3). The only aneuploid fetuses
recorded were two X monosomics (Table 4), and it is
possible that these arose by chromosome loss rather
than by true nondisjunction.

X-Ray-Induced Nondisjunction in
Females
The need for experimental studies into the effect of

x-rays on female germ cells has arisen because of the
suggestion from a number of epidemiological and
clinical studies in man, that parental (usually mater-
nal) irradiation may increase the risk of having a
baby with Down's syndrome (trisomy 21) (4245).
Alberman et al. (45) have suggested that radiation
damage by small doses, added to the well known
ageing effect in women, may well represent a real,
albeit proportionately small, factor in the genesis of
trisomy 21. These authors calculated a doubling dose
of 2 rad for Down's syndrome, a risk still much
smaller than the ageing effect alone, but a risk
greatest in women who had received x-rays (either
diagnostic or therapeutic) more than 10 years before
their children were conceived (45).
The first experimental studies to test Alberman's

assumptions were made by Yamamoto et al. (14, 15).
They analyzed the fetal progeny, at 10.5 days gesta-
tion, from young (3-5 months) and aged (11-16
months) female mice given 5 rad x-rays or kept un-
treated prior to mating. They noted an increase in
aneuploidy due to ageing but claimed an even greater
increase in old x-rayed mice compared to old con-
trols. They deduced that the age of the mother sig-
nificantly affected the susceptibility of oocytes to
radiation damage. However, the data have been se-
verely criticized on several counts (46) and a recent
attempt to repeat the experiments (18) has failed to
confi'rm the findings.

In another attempt to test the claims ofYamamoto
et al. (14, 15), we have begun experiments involving
low dose x-ray exposures to female mice. Since the
essential feature of the human data would appear to

be that the association between irradiation and
Down's syndrome is strongest in women who con-
ceived 10 or more years after receiving x-rays, it
seemed appropriate to us to include an additional
category of female and one which Yamamoto et al.
(14, 15) had omitted. These were females which were
x-rayed when young but mated when old. In our
experiments, therefore, we have five test groups, the
first four being identical to those used by Yamamoto
et al. (14, 15), the fifth being our own addition: young
(6-8 week) controls; young given 5 rad; aged (9
month) controls; aged, then given 5 rad; given 5 rad
then aged.
Table 5 shows the results obtained so far in each

group. Numbers of analyzed fetuses are still small,
particularly in the aged groups, where litter sizes are
halved compared with their young equivalents. Re-
ductions in litter size of this order have been found
also by Yamamoto and Watanabe (16) in matings of
aged female mice. The effects of ageing on the over-
all frequencies ofabnormalities are clearly seen from
the fetal karyotyping, but there is no evidence that 5
rad x-rays enhances this frequency either in young or
aged mothers. Numbers of analyzed fetuses are still
too small however to permit one to reach positive
conclusions regarding possible increases in levels of
aneuploidy. The karyotypes of the abnormal fetuses
found are given in Table 6.

Table 6. Karyotypes of abnormal Fi fetal progeny of control
and irradiated females.

Aneuploid Polyploid Mosaic

Control young
5 rad young
Control aged

41,XXY(2)

Aged + 5 rad 41,XY,+ 16
S rad + Aged 41,XY,+3

39,X,t(6; 15)

aNot analyzed.

39/40(2)a
39/40a

3n = 60a 39/40a
4n = 80a 39,X/40,X,(del)X
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Discussion
In the 1972 report of the U.N. Scientific Commit-

tee on the Effects of Atomic Radiation (47) it was
stated: "future research in the field of radiation
genetics should include studies on the mechanism of
induction by irradiation ofgerm cells in experimental
organisms, and on its frequency ofoccurrence under
different conditions of irradiation of the germ cell
most at risk."
The relative dearth of information concerning in-

duced nondisjunction in mammalian germ cells at the
time this' report was prepared stimulated our own
interest in the subject. Most experimental data avail-
able at that time concerned nondisjunction in
females, and the main question being asked was
whether low dose x-irradiation could act over and
above the ageing effect to enhance the already
known high levels of nondisjunction found in older
women (14, 15, 4245). Less attention had been paid
to males and the possible effects on nondisjunction
which might be produced by irradiation of the testis.
It was known, however, that x-rays could induce
nondisjunction in spermatocytes of Drosophila
melanogaster (48), and in man, there was suggestive
evidence that aneuploid (and polyploid) abortuses
occurred more frequently among the progeny ofmen
(but not women) exposed professionally to radiation
(49). Furthermore, collective data concerning the
genesis of trisomy 21 in man now indicate that one
fifth of cases are paternal in origin, the contribution
to nondisjunction coming almost equally from the
first and second meiotic division (50).

In the mouse, sporadic reports of viable primary
trisomics among the sterile and semisterile progeny
of irradiated and chemically treated males had been
made (51-53), but doubts had been expressed con-
cerning their possible origin (54). Lyon and Meredith
(54) questioned whether the extra element in the
karyotype could be a translocation product, the 41
chromosome mice in question thus being tertiary and
not primary trisomics. The reports were, of course,
made prior to the advent of banding methods for the
identification of chromosomes, but the authors (53)
were themselves convinced, from the meiotic con-
figurations, that they were indeed dealing with pri-
mary trisomics. If they were correct in their in-
terpretations, it is interesting in the context of this
paper, to note that six out of the seven such aneu-
ploid animals produced by x-irradiation of sires,
were derived from the treatment of type A sper-
matogonia and only one from a treated spermato-
cyte. However, higher x-ray doses (350 and 700 rad)
were used than in our own investigations. In another
series of experiments, Russell and Montgomery (55)
failed to recover XO progeny from 600 rad irradia-
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tion of spermatogonia, and they suggested this may
have been due to the inviability of XO and OY cell
progeny in the testis. Indeed, Searle (20) deduced
from the results available that any chromosome
losses produced in spermatogonia of the mouse
would not normally be transmitted to the next gener-
ation. He also suggested that complete trisomy is
probably not induced in spermatogonia to any great
extent since an extra chromosome has only rarely
been found in mouse spermatocytes at metaphase I
or II after spermatogonial irradiation (56). Our own
observations, however, indicate that nondisjunction
does occur following treatment of spermatogonia, a
dose of only 100 rad being sufficient to produce a 3.5
fold increase over control levels for type A sper-
matogonia and that the progeny of such non-
disjunctional events can be transmitted to the next
generation. As type A spermatogonia are among the
most radio-resistant of the spermatogonial genera-
tions in terms of cell killing (33) and are certainly the
most important cell type from the point of view of
long germ genetic effects following irradiation to the
male, we believe our findings are of some impor-
tance. Further investigations along the lines already
commenced are therefore proposed.
We believe that 10-day fetal karyotyping provides

a simple and reliable screening method for non-
disjunction which could readily be applied to the
testing of other mutagenic compounds. The proce-
dures are laborious, but we believe that the great
need for information on aneuploidy in mammalian
germ line systems is sufficient justification for their
continued use.

Finally, let us consider how our findings in the
mouse relate to the situation in man. It would seem
that the levels of aneuploidy recorded at conception
for man are of an order of magnitude higher than for
the mouse. From cytological studies on one-call em-
bryos of the mouse, Maudlin and Fraser (11) have
estimated that less than 2% are aneuploid. In man, an
estimate of aneuploidy at conception based on the
known percentage of all conceptions which termi-
nate in abortion, and the numbers of aneuploids
among those abortions, would work out at around
10%o (57). For postimplantation fetuses in the mouse,
our uncorrected estimate based on 9-10 day fetuses is
0.36% and that of Ford and Evans (13) for 8-11 day
fetuses is 0.60%. Their estimate for 12-15 day
fetuses is 0.32%. Among liveborn and adult mice,
the limited data available (19, 23, 55) suggest a neg-
ligible incidence of aneuploidy of perhaps less than
0.05%, while in man, the level is 0.39o among con-
secutive live-born babies (58). Thus there are strik-
ing differences in the levels of aneuploidy for the two
species, and this should be borne in mind when ex-
trapolations between man and the mouse are being
made.
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